ஒற்றை அணுவின் புகைப்படம்

‘அயனிப் பொறியில் சிக்கிய அணு’ (Single Atom in an Ion Trap’) என்ற தலைப்பிலான இந்தப் புகைப்படத்தை எடுத்தவர், ஆக்ஸ்போர்டு பல்கலைக் கழகத்தைச் (University of Oxford) சேர்ந்த, டேவிட் நார்ட்லிங்கர் (David Nadlinger). இவர், ஒற்றை அணுவை சாதாரண கண் கொண்டு பார்க்க முடிந்தால் எப்படி இருக்கும் என்று சிந்தித்து, தன் ஆய்வகத்தில் இப்படத்தை எடுத்திருக்கிறார்.

புகைப்படத்தில், இரண்டு உலோக மின் முனைகளுக்கு நடுவே அம்புக்குறி சுட்டிக்காட்டும் இடத்தில், ஒரு வெண்புள்ளி போல தோன்றுவது தான் அந்த ஒற்றை அணு.

இரு உலோக முனைகளிலிருந்து வெளிப்படும் மின்காந்தப் புலத்தில் சிக்கி, அதிகம் அசையாமல் மிதக்கும், ‘ஸ்ட்ரோன்டியம்’ (strontium)அணு மீது, நீல ஊதா லேசரை செலுத்தினால், அதன் ஒளியை வாங்கி, மீண்டும் அந்த அணு உமிழ்கிறது. இது, புகைப்படம் பிடிக்கும் நேர அளவுக்கு போதுமானதாக இருந்தது என, தன் சாதனையை விளக்கி இருக்கிறார் டேவிட்.

இந்த புகைப்படத்திற்கு பிரிட்டனைச் சேர்ந்த, இ.பி.எஸ்.ஆர்.சி., ஆய்வகம் (Engineering and Physical Sciences Research Council (EPSRC)., நடத்திய அறிவியல் புகைப்படப் போட்டியில் முதல் பரிசு கிடைத்துள்ளது.

balls

Visible atom

‘Single Atom in an Ion Trap’, by David Nadlinger, from the University of Oxford, shows the atom held by the fields emanating from the metal electrodes surrounding it. The distance between the small needle tips is about two millimetres.

When illuminated by a laser of the right blue-violet colour the atom absorbs and re-emits light particles sufficiently quickly for an ordinary camera to capture it in a long exposure photograph. The picture was taken through a window of the ultra-high vacuum chamber that houses the ion trap.

Laser-cooled atomic ions provide a pristine platform for exploring and harnessing the unique properties of quantum physics. They can serve as extremely accurate clocks and sensors or, as explored by the UK Networked Quantum Information Technologies Hub, as building blocks for future quantum computers, which could tackle problems that stymie even today’s largest supercomputers.

Source : Dinamalar and EPSRC

Advertisements

தங்கத்தை சுரக்கும் பாக்டீரியா

பொன் சுரக்கும் பேக்டீரியா வகை ஒன்று இருப்பது பல ஆண்டுகளாக விஞ்ஞானிகளுக்குத் தெரியும். ஆனால் ‘சி.மெடாலிடியூரன்ஸ்’ (bacterium C metallidurans) எனும் அந்த பாக்டீரியா எப்படி நேனோ அளவு தங்கத்தை உற்பத்தி செய்து தள்ளுகிறது என்பதுதான் பெரிய புதிராக இருந்தது.

தற்போது ஜெர்மனி மற்றும் ஆஸ்திரேலிய விஞ்ஞானிகள் அந்த ரசவாதம் என்ன என்பதை கண்டுபிடித்திருக்கின்றனர்.. அதன்படி, பல உயிரிகளால் தாங்க முடியாத நச்சுத் தன்மை உள்ள மண்ணில்தான் சி.மெடாலிடியூரன்ஸ், வளர்கிறது. அதற்கு செம்பு உலோக தாதுக்கள் தான் உணவு. ஆனால், செம்பினை அளவுக்கு அதிகமாக உண்ண முடியாத அந்த பாக்டீரியா, தங்கத் தாதுக்களையும் உட்கொள்கின்றன.

அவற்றை ஜீரணிக்க வினோதமான வேதிவினையை நிகழ்த்தி சிறிதளவு செம்பை செறிமானம் செய்து, தங்கத் தாதுவை உலோகமாக மாற்றி வெளியேற்றிவிடுகின்றன.

தற்போது, தங்கத் தாதுவிலிருந்து தங்கத்தை பிரித்தெடுக்க, நச்சு மிக்க பாதரசத்தைத்தான் பயன்படுத்த வேண்டியிருக்கிறது.

சி.மெடாலிடியூரன் நிகழ்த்தும் இந்த வேதிவினையை மேலும் ஆராய்ந்தால், அவற்றை பயன்படுத்தி, தங்கத் தாதுக்களிலிருந்து தங்கத்தை பிரித்தெடுக்க, அவற்றையே பயன்படுத்தலாம் என விஞ்ஞானிகள் தெரிவித்துள்ளனர்.

balls

Bacteria turn toxic metals into gold

The rod-shaped bacterium C. metallidurans primarily lives in soils that are enriched with heavy metals. They  break down minerals in the soil and release toxic heavy metals and hydrogen into the environment. In 2009 scientists discovered that C. metallidurans is able to deposit gold biologically. But the exact processes that take place remained unknown. Now, the researchers have finally been able to solve the mystery.

A team of researchers from Martin Luther University Halle-Wittenberg (MLU), the Technical University of Munich (TUM) and the University of Adelaide in Australia has discovered the molecular processes that take place inside the bacteria.

Gold enters the bacteria the same way as copper. Copper is a vital trace element for C. metallidurans however it is toxic in large quantities. When the copper and gold particles come into contact with the bacteria, a range of chemical processes occur: Copper, which usually occurs in a form that is difficult to take up, is converted to a form that is considerably easier for the bacterium to import and thus is able to reach the interior of the cell. The same also happens to the gold compounds.

When too much copper has accumulated inside the bacteria, it is normally pumped out by the enzyme CupA. “However, when gold compounds are also present, the enzyme is suppressed and the toxic copper and gold compounds remain inside the cell. Copper and gold combined are actually more toxic than when they appear on their own,” says Dietrich H. Nies. To solve this problem, the bacteria activate another enzyme—CopA. This enzyme transforms the copper and gold compounds into their originally difficult-to-absorb forms. “This assures that fewer copper and gold compounds enter the cellular interior. The bacterium is poisoned less and the enzyme that pumps out the copper can dispose of the excess copper unimpeded. Another consequence: the gold compounds that are difficult to absorb transform in the outer area of the cell into harmless gold nuggets only a few nanometres in size,” says Nies.

In nature, C. metallidurans plays a key role in the formation of so-called secondary gold, which emerges following the breakdown of primary, geologically created, ancient gold ores. It transforms the toxic gold particles formed by the weathering process into harmless gold particles, thereby producing gold nuggets.

The study provides important insights into the second half of the bio-geochemical gold cycle. Here, primary gold is transformed by other bacteria into mobile, toxic gold compounds, which is transformed back into secondary metallic gold in the second half of the cycle. Once the entire cycle is understood, gold can also be produced from ores containing only a small percentage of gold without requiring toxic mercury bonds as was previously the case.

Source  Dinamalar and Phys org

மின் கண்டுபிடிப்புக்கு உதவிய ஈல் மீன்கள்

அதிசய மீனான ஈல், எப்படி உடலில் மின்சாரத்தை தயாரிக்கிறது.. அது போல அமெரிக்காவிலுள்ள கலிபோர்னியா, மிச்சிகன் மற்றும் பிரைபோர்க் (University of Fribourg) பல்கலைக்கழகங்களைச் சேர்ந்த ஆராய்ச்சியாளர்கள், ‘செயற்கை மின் உறுப்பு’ ஒன்றை உருவாக்கியுள்ளனர். ஈல் மீன் 600 வோல்ட்டுகள் வரை மின்சாரத்தை உடலில் உற்பத்தி செய்யும்., அதே முறையை ஆராய்ச்சியாளர்கள் ஆய்வுக்கூடத்தில் உருவாக்க முயன்று வெற்றி பெற்றுள்ளனர்.
ஈல் மீனின் உடலில் உள்ள, ‘எலக்ட்ரோசைட்’கள் தான் மின்சாரத்தை உற்பத்தி செய்கின்றன. எலக்ட்ரோசைட்டில் பொட்டாசியம் மற்றும் சோடியம் அயனிகள் வினை புரிவதால், மின்சாரம் உற்பத்தியாகிறது. எனவே, விஞ்ஞானிகள் ஒரு பிளாஸ்டிக் தாளில் ஹைட்ரோ ஜெல் குமிழிகளில் உப்புநீர் மற்றும் சாதாரண நீரை மாற்றி மாற்றி ஒட்டவைத்தனர்.
அவற்றை சவ்வுகளால் பிரித்தும் வைத்தனர். இந்த குமிழ்கள் ஒன்றோடு ஒன்று தொடர்பு கொண்டபோது, மின் வேதி வினையால், 100 வோல்ட் வரை மின்சாரம் உற்பத்தியானது.இது, ஈல் தயாரிக்கும் மின்சாரத்தை விட மிகவும் குறைவு தான். ஆனால் மின் உற்பத்தி அளவை அதிகரிக்க ஆராய்ச்சிகள் மேற்கொள்ளப்படுவதாக விஞ்ஞானிகள் தெரிவித்துள்ளனர்.
இந்த கண்டுபிடிப்பு நடைமுறைக்கு வந்தால், இதய துடிப்புக் கருவி, கருவிழி மேல் பொருத்தும் மெய்நிகர் திரை, செயற்கை கை, கால் போன்ற உறுப்புகள் போன்றவற்றை இயக்க உதவும் மின்கலன்களை தயாரிக்க உதவும்.

balls

An electric-eel-inspired soft power source

In 1799, the Italian scientist Alessandro Volta fashioned an arm-long stack of zinc and copper discs, separated by salt-soaked cardboard. This “voltaic pile” was the world’s first synthetic battery, but Volta based its design on something far older—the body of the electric eel. This infamous fish makes its own electricity using an electric organ that makes up 80 percent of its two-meter length. The organ contains thousands of specialized muscle cells called electrocytes. Each only produces a small voltage, but together, they can generate up to 600 volts—enough to stun a human, or even a horse.

A team of researchers led by Michael Mayer at the University of Fribourg and Engineers from University of Michigan, have now created a new kind of power source that ingeniously mimics the eel’s electric organ.

This Electric-eel-inspired power concept uses gradients of ions between miniature polyacrylamide hydrogel compartments bounded by a repeating sequence of cation- and anion-selective hydrogel membranes. The system uses a scalable stacking or folding geometry that generates 110 volts at open circuit or 27 milliwatts per square metre per gel cell upon simultaneous, self-registered mechanical contact activation of thousands of gel compartments in series while circumventing power dissipation before contact.

Unlike typical batteries, these systems are soft, flexible, transparent, and potentially biocompatible. These characteristics suggest that artificial electric organs could be used to power next-generation implant materials such as pacemakers, implantable sensors, or prosthetic devices in hybrids of living and non-living systems.

Source Dinamalar and Nature

 

பூமியை சூடேற்றும், ‘சாண்ட்விச்’

இன்று வீட்டிலும், உணவகங்களிலும் துரித உணவாக இருக்கும் சாண்ட்விச், புவி வெப்பமாதலில் கணிசமான பங்கு வகிப்பதாக, ஓர் ஆய்வு தெரிவிக்கிறது.
பிரிட்டனின் மான்செஸ்டர் பல்கலைக்கழக (University of Manchester) விஞ்ஞானிகளின் ஆய்வுப்படி, பிரிட்டனில் மட்டும் சாண்ட்விச் தயாரிப்பில், 86 லட்சம் கார்கள் வெளியேற்றும் அளவுக்கு கரியமில மாசு காற்றில் கலக்கிறது.
வீடுகள், உணவகங்கள் என, பிரிட்டனில் மட்டும் ஆண்டுக்கு, 11.5 பில்லியன் சாண்ட்விச்கள் தயாராகின்றன. இதை தயாரிப்பதால் சுற்றுச்சூழலுக்கு ஏற்படும் தாக்கத்தை அறிய மான்செஸ்டர் விஞ்ஞானிகள் விரிவான ஆராய்ச்சியை மேற்கொண்டனர். இந்த ஆய்வுக்காக, பிரிட்டனில் பரவலாக உண்ணப்படும் 40 வகை சாண்ட்விச்களை விஞ்ஞானிகள் கணக்கில் எடுத்துக் கொண்டனர்.
இவற்றில், முட்டை, பதப்படுத்திய இறைச்சி, சாசேஜ் போன்றவற்றால் தயாரித்து, குளிர்ச்சியூட்டி வைக்கப்படும் சான்ட்விச்களே அதிகம் சுற்றுச்சூழல் மாயை உண்டாக்குவதாக விஞ்ஞானிகள் கண்டறிந்தனர்.
இவற்றை தயாரிக்க ஒரு கார், 19 கி.மீ., துாரம் ஓடினால் ஏற்படும் கரியமில வாயுவுக்கு இணையான மாசுகள் காற்றில் கலக்கின்றன. மாறாக, பாலாடைக் கட்டி, முட்டை போன்றவற்றால் கொண்டு தயாரிக்கப்படும் சாண்ட்விச்கள் குறைவான மாசுபாட்டினை உருவாக்குகின்றன.
சாண்ட்விச்சை தயாரிக்க பயன்படும் பதப்படுத்திய இறைச்சியால் தான், அதிக மாசு ஏற்படுகிறது.
இவற்றோடு சீஸ், தக்காளி, லெட்யூஸ், ரொட்டி போன்ற இடு பொருட்களால் தான், அதிக மாசு ஏற்படுகிறது. சாண்ட்விச் தயாரிப்பதால் ஏற்படும் மாசுபாட்டில், 37 முதல் 67 சதவீதம் வரை இவையே காரணிகளாகின்றன.
மற்ற மாசுக் காரணிகளில் அவற்றை பெட்டிகளில், காகிதங்களில் அடைப்பது போன்றவற்றால், 8.5 சதவீத மாசு ஏற்படுகிறது.
இவற்றை குளிரூட்டப்பட்ட வாகனங்களில் பல இடங்களில் எடுத்துச் செல்வதால் 4 சதவீத மாசும், கடைகளில் குளிரூட்டி வைத்து விற்பதால் 25 சதவீத மாசும் ஏற்படுவதை விஞ்ஞானிகள் கண்டறிந்துள்ளனர்.
சாண்ட்விச்சில் பயன்படும் பொருட்களில் சில மாற்றங்களைச் செய்வதன் மூலம் மட்டும் கரியமில வாயு வெளியேற்றத்தில், 50 சதவீதத்தை குறைக்க முடியும் எனவும் மான்செஸ்டர் விஞ்ஞானிகள் பரிந்துரைத்துள்ளனர்.

balls

Sandwiches causes global warming

Researchers in the U.K. calculated how much they are contributing to climate change. They found that the 11.5 billion sandwiches eaten each year in that country produce the same greenhouse gas emissions as 8.6 million cars.

Researchers from the University of Manchester considered 40 combinations of sandwiches. They scrutinized several factors, including homemade versus pre-packaged, production of the ingredients, the actual ingredients and how much food was wasted in making it.

The bread-encased meal with the worst impact on the environment was the all-day breakfast sandwich, which has egg, bacon and sausage. Just one of those sandwiches produces carbon dioxide emissions equivalent to 12 miles of driving. The sandwich with the lowest impact was a homemade ham and cheese sandwich.

The study further revealed that agricultural production and processing of the ingredients were the highest contributors to the carbon footprint of sandwiches, though it depends on the type of sandwich. For ready-made sandwiches, agricultural production and processing accounted for 37 to 67 percent of greenhouse gas emissions. Keeping a sandwich cool at a supermarket or deli also increases the polluting impact, accounting for up to 25 percent of its emissions. Packaging accounts for 8.5 percent and transportation and further refrigeration accounts for 4 percent.

The researchers came up with some solutions to curb the climate impact.  Ingredients that have a high carbon footprint, such as lettuce, tomato, cheese and meat, could be reduced or omitted entirely. Reducing meat and cheese would be healthier, Making your sandwich at home rather than eating a pre-made one could cut carbon emissions by half, the researchers noted.

Source Dinamalar and Newsweek

செவ்வாயில் பனிக்கட்டிகள்

செவ்வாய் ஒரு வறண்ட கிரகம் என்று தான் விஞ்ஞானிகள் கருதினர். ஆனால், செவ்வாயின் நிலப்பகுதிக்கு அடியில் ஐஸ் கட்டிகள் உறைந்த நிலையில் இருக்கக்கூடும் என்பதை, அண்மையில், ‘நாசா’வின் ஆய்வுகள் தெரிவித்துள்ளன.
அமெரிக்க விண்வெளி ஆய்வு மையமான, ‘நாசா’ அனுப்பிய செவ்வாய் ஆய்வுக் கலனின் ரேடார் கருவி, செவ்வாயின் நிலப்பரப்புக்கு அடியில் என்ன இருக்கிறது என்பதை ஆராய்ந்து, தகவல்களை அனுப்பியது.
அந்தத் தகவல்களை வைத்துப் பார்க்கையில், ஆய்வு செய்த சில இடங்களில், செவ்வாயின் நிலப் பரப்புக்கு அடியில், 90 மீட்டர் அளவுக்கு தடிமனான பனிக்கட்டிப் பாறைகள் இருப்பதற்கான ஆதாரங்கள் கிடைத்துள்ளன.
அந்த பனிக்கட்டிகள் மண், கல் கலக்காமல் துாய்மையான நிலையில் இருக்கக்கூடும் என்றும் விஞ்ஞானிகள் கருதுகின்றனர்.
இது உறுதி செய்யப்பட்டால், பூமியிலிருந்து செவ்வாய்க்கு செல்ல இருக்கும் எதிர்கால விண்வெளி வீரர்களுக்கு, குடிநீருக்கு பிரச்னை இருக்காது.

balls

Buried ice Spotted on Mars

Researchers using NASA’s Mars Reconnaissance Orbiter (MRO) have found eight sites where thick deposits of ice beneath Mars’ surface are exposed in faces of eroding slopes.

These eight scarps, with slopes as steep as 55 degrees, reveal new information about the internal layered structure of previously detected underground ice sheets in Mars’ middle latitudes.

The ice was likely deposited as snow long ago. The deposits are exposed in cross section as relatively pure water ice, capped by a layer one to two yards (or meters) thick of ice-cemented rock and dust. They hold clues about Mars’ climate history. They also may make frozen water more accessible than previously thought to future robotic or human exploration missions.

Scientists have not determined how these particular scarps initially form. However, once the buried ice becomes exposed to Mars’ atmosphere, a scarp likely grows wider and taller as it “retreats,” due to sublimation of the ice directly from solid form into water vapor. At some of them, the exposed deposit of water ice is more than 100 yards, or meter, thick. Examination of some of the scarps with MRO’s Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) confirmed that the bright material is frozen water.

The new study not only suggests that underground water ice lies under a thin covering over wide areas, it also identifies eight sites where ice is directly accessible, at latitudes with less hostile conditions than at Mars’ polar ice caps. Astronauts could essentially just go there with a bucket and a shovel and get all the water they need.

The exposed ice has scientific value apart from its potential resource value because it preserves evidence about long-term patterns in Mars’ climate. The tilt of Mars’ axis of rotation varies much more than Earth’s, over rhythms of millions of years. Today the two planets’ tilts are about the same. When Mars tilts more, climate conditions may favor buildup of middle-latitude ice.

Source Dinamalar and NASA