மின் கண்டுபிடிப்புக்கு உதவிய ஈல் மீன்கள்

அதிசய மீனான ஈல், எப்படி உடலில் மின்சாரத்தை தயாரிக்கிறது.. அது போல அமெரிக்காவிலுள்ள கலிபோர்னியா, மிச்சிகன் மற்றும் பிரைபோர்க் (University of Fribourg) பல்கலைக்கழகங்களைச் சேர்ந்த ஆராய்ச்சியாளர்கள், ‘செயற்கை மின் உறுப்பு’ ஒன்றை உருவாக்கியுள்ளனர். ஈல் மீன் 600 வோல்ட்டுகள் வரை மின்சாரத்தை உடலில் உற்பத்தி செய்யும்., அதே முறையை ஆராய்ச்சியாளர்கள் ஆய்வுக்கூடத்தில் உருவாக்க முயன்று வெற்றி பெற்றுள்ளனர்.
ஈல் மீனின் உடலில் உள்ள, ‘எலக்ட்ரோசைட்’கள் தான் மின்சாரத்தை உற்பத்தி செய்கின்றன. எலக்ட்ரோசைட்டில் பொட்டாசியம் மற்றும் சோடியம் அயனிகள் வினை புரிவதால், மின்சாரம் உற்பத்தியாகிறது. எனவே, விஞ்ஞானிகள் ஒரு பிளாஸ்டிக் தாளில் ஹைட்ரோ ஜெல் குமிழிகளில் உப்புநீர் மற்றும் சாதாரண நீரை மாற்றி மாற்றி ஒட்டவைத்தனர்.
அவற்றை சவ்வுகளால் பிரித்தும் வைத்தனர். இந்த குமிழ்கள் ஒன்றோடு ஒன்று தொடர்பு கொண்டபோது, மின் வேதி வினையால், 100 வோல்ட் வரை மின்சாரம் உற்பத்தியானது.இது, ஈல் தயாரிக்கும் மின்சாரத்தை விட மிகவும் குறைவு தான். ஆனால் மின் உற்பத்தி அளவை அதிகரிக்க ஆராய்ச்சிகள் மேற்கொள்ளப்படுவதாக விஞ்ஞானிகள் தெரிவித்துள்ளனர்.
இந்த கண்டுபிடிப்பு நடைமுறைக்கு வந்தால், இதய துடிப்புக் கருவி, கருவிழி மேல் பொருத்தும் மெய்நிகர் திரை, செயற்கை கை, கால் போன்ற உறுப்புகள் போன்றவற்றை இயக்க உதவும் மின்கலன்களை தயாரிக்க உதவும்.

balls

An electric-eel-inspired soft power source

In 1799, the Italian scientist Alessandro Volta fashioned an arm-long stack of zinc and copper discs, separated by salt-soaked cardboard. This “voltaic pile” was the world’s first synthetic battery, but Volta based its design on something far older—the body of the electric eel. This infamous fish makes its own electricity using an electric organ that makes up 80 percent of its two-meter length. The organ contains thousands of specialized muscle cells called electrocytes. Each only produces a small voltage, but together, they can generate up to 600 volts—enough to stun a human, or even a horse.

A team of researchers led by Michael Mayer at the University of Fribourg and Engineers from University of Michigan, have now created a new kind of power source that ingeniously mimics the eel’s electric organ.

This Electric-eel-inspired power concept uses gradients of ions between miniature polyacrylamide hydrogel compartments bounded by a repeating sequence of cation- and anion-selective hydrogel membranes. The system uses a scalable stacking or folding geometry that generates 110 volts at open circuit or 27 milliwatts per square metre per gel cell upon simultaneous, self-registered mechanical contact activation of thousands of gel compartments in series while circumventing power dissipation before contact.

Unlike typical batteries, these systems are soft, flexible, transparent, and potentially biocompatible. These characteristics suggest that artificial electric organs could be used to power next-generation implant materials such as pacemakers, implantable sensors, or prosthetic devices in hybrids of living and non-living systems.

Source Dinamalar and Nature

 

Advertisements